

The ILSD TAF

Fabien Dagnat

ILSD – Presentation – 2025-2026

Context

- Software and services compose the core of the digital society
- Previously, you should have learned that software should be delivered fast, in large quantity and respect quality and security requirements
- Many software are distributed

Context

- Software and services compose the core of the digital society
- Previously, you should have learned that software should be delivered fast, in large quantity and respect quality and security requirements
- Many software are distributed
- ⇒ They must collaborate while being geographically dispersed
- Examples?

Context

- Software and services compose the core of the digital society
- Previously, you should have learned that software should be delivered fast, in large quantity and respect quality and security requirements
- Many software are distributed
- ⇒ They must collaborate while being geographically dispersed
- Examples?
 - Bank
 - Online games
 - Social networks, cloud platforms, ...

Objectives of the TAF

- Ingénierie Logicielle des Systèmes Distribués
- Software Engineering for Distributed Systems

Aims at making you

- Understand the challenges of software and data distribution
- Know the fundamentals and limitations
- Practice and apply tools
- ⇒ To become engineers capable of dealing with these complex problems

Objectives of the TAF

- Ingénierie Logicielle des Systèmes Distribués
- Software Engineering for Distributed Systems

Aims at making you

- Understand the challenges of software and data distribution
- Know the fundamentals and limitations
- Practice and apply tools
- ⇒ To become engineers capable of dealing with these complex problems
- Data (states) must be exchanged
- Decisions must be made collectively
- **>** ...

ILSD and you

Let's start with a small survey (thank you to use your real name):

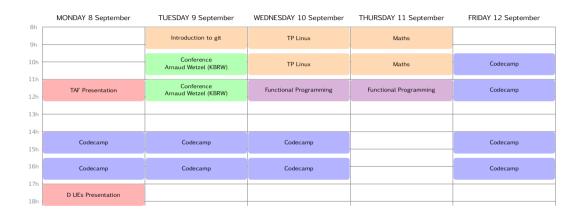
- Connect to https://app.wooclap.com/ILSD
- You can participate

Which jobs?

- Research and development
- Architect
- In all domains
 - Industry
 - Medicine
 - Physic
 - Bank and finance
 - Trade
 - Gaming

Some past internships

- Data Science Engineer for Systems Engineering (Ariane Group)
- Full Stack Developer (KBRW)
- GIS micro-service Engineer (Buildrz)
- Goland developer (Orange)
- Blockchain developer (Automata)
- Developer (Société Générale)
- Assistant Project Manager (Ubisoft)
- Software Design and Development Engineer (Naval Group)
- Software engineer (Amazon France Logistique SAS)



Practical information

- Mainly room B1-006
- Moodle: ILSD
- > Forum on moodle
- mailing list: taf-ilsd-etudiants@imt-atlantique.fr
- fabien.dagnat@imt-atlantique.fr, Office D3-120A
- 2 student representatives, volunteers?

Back-to-school week

Progress

- What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

Engineering – Processes and methods

- From the problem to a solution
- Understand the problem
- Propose several solutions (reuse, build)
- Compare and justify a choice

Software - Product

- Program
- Structure, architect
- Communicate
- Test
- Validate

Systems – Uses

- Perform a function
- In a complex context
 - Faults
 - Varying Resources
 - Various Users
 - Malicious intent
- Formation starts with simple cases (basic algorithms) then we add complexity (centralized software), then we add concurrency...
- ⇒ Distribution is a new step in complexity

Distributed

- Distribution of a system leads to new kind of complexity
 - Non-locality, communication time, distributed data, replicated data...
 - Faults!
- There is no global time, no global state...
- ⇒ A result of impossibility, we must choice between
 - System consistency
 - Its resistance to partitioning
 - Data availability

Where are distributed software?

Everywhere!

- ▶ Some examples: the cloud, online services, video conferences, online games, chat, e-commerce, booking systems...
- > Even for centralized software, its deployment and updates are distributed
- We use interconnected machines whose programs work together

Progress

- 1 What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

What's the point?

- Performance gains
 - sharing resources
 - sharing computations
- Scaling up
- The system using the software is distributed (e.g. a car or a plane)
- Better availability
- Better reliability

Which difficulties?

- Heterogeneity
- No global clock
- No global state just partial views
- > Faults: machine, communication channel
- ▶ Security: malicious intent (e.g. denial of service, man-in-the-middle)
- Coordinate: reconcile
- Decide: consensus
- Various scale: from Personal Area Network to internet
- **>** ...

Progress

- 1 What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

Schedule

TU	Slot	Day	Period	Content			
ANSYD	Α	tuesday or thursday sept – de		fondementals & applications			
FIAB	В	tuesday or thursday	sept – dec	reliability			
CALC	С	tuesday or thursday	sept – dec	performance			
?	D	friday	sept – dec	?			
CAD	Е	3 weeks	jan	design & management			
?	F	tuesday	feb – mar	?			
?	G	thursday	feb – mar	?			
?	Н	friday	feb – mar	?			
Internship							

Prerequisites

- Programming
- Software design (git, test)
- Some notions of network [PRIP]
- Some notions of concurrency

We expect

- Commitment
- Personal work
- Absenteeism School policy: courses are mandatory
- > Toward a professional attitude...

About using probabilistic assistants (*Al tools)

- Reminder of school policy
 - by default, the use of such tools is prohibited, unless explicitly stated otherwise
- In most educational situations, the use of such tools is not relevant
 - the goal is generally to learn how to do something
 - the journey is more important than the result
 - effective use of these tools to significantly improve productivity requires a good understanding of the field and a critical eye
 - when such a tool is permitted, it is important to be able to explain/justify the result
- Using tools to translate/synthesize natural language is totally accepted
- When unsure, please ask your teachers about their policy on this matter

Progress

- 1 What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

Project

- ▶ 11/9 à partir de 13h30 : foire aux projets
- ▶ 18/9 : choix sur moodle
- 30/9 : affectations des sujets aux groupes d'élèves
- 2/10 : première séance de travail du groupe
- 20/11 et/ou 27/11 : revues de projet
- ▶ 19/1 et/ou 23/1 : soutenances du semestre d'automne
- Mars : Forum et rendus finaux

En fin d'après midi présentation en amphi du déroulé du projet PROCOM par Alexandre Reiffers-Masson

Progress

- 1 What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

ANSYD

- Objectives
 - Modeling of a distributed system
 - Classical problems (diffusion, consensus, causality)
 - Distributed graph algorithms
- Content
 - Go language
 - Time, clock and synchronization
 - Gossip, membership and failure detection
 - Consensus
 - Broadcast and causal broadcast
 - Reputation systems
 - Totally and partially asynchronous iteraive algorithms
 - Stockastic approximation schemes with delays

FIAB

- Objectives
 - discover distributed programming and reliability
 - > to be able to write distributed programs using the Elixir language
 - become operational by adopting professional practices
- Approach
 - work on a realistic e-commerce system
 - supervision by professionals (KBRW)
 - integration of reliability progressively
- Content
 - > Time and clock, distributed transaction
 - Fault, fault tolerance, replication et consistency of data

CALC

- Objectives
 - communication- and computation-oriented distribution
 - discoveries of frameworks and tools
 - become operational by adopting professional practices
- Content
 - Sockets, RPC, RMI, Corba
 - MPI
 - RabbitMQ
 - map/reduce, cloud

CAD

- Objectives
 - synthesis project (reliability, performance, security)
- Content
 - Work in progress

Progress

- 1 What?
- 2 Why?
- 3 How?
- 4 Procom Project
- 5 Core TU
- 6 Electives TUs

D slot

- Choice this week
- Presentation at the end of the day

TU	Slot	Day	Period	Content
C++ IBDS PRIP WSWD	D	friday	sept – dec	Soft. Eng. and prog. big data basics of network semantic web
 ISI				

Spring

- Parcours FGH under construction shared with DCL TAF
- This year (mixing only if required)
 - Services
 - SCSCH Distributed systems for human centered services
 - **WEBAPP** Web application engineering
 - MOBAPP Application development for mobile devices
 - Virtual Reality and Interactive Systems
 - ▶ RVRA Virtual reality, augmented reality
 - ▶ **ECOTI** Issues and design of immersive technologies
 - RMA Advanced mixed reality
 - 3 Software development
 - LALOG Languages & logics
 - OSAP Service architecture and system programming
 - BOT Robotic system programming

Back to the survey

- Connect to https://app.wooclap.com/ILSD
- You can participate

